

THE UNIVERSITY OF TEXAS AT EL PASO

Comparison of the effects of ZnO nano/bulk materials on bean plants grown in different soil types

Presenter: Illya A. Medina Velo Mentor: Dr. Jorge Gardea Torresdey

November 2016

Introduction

Nanomaterials ZnO NMs Environmental release Previous studies Beans

Nanomaterials (NMs)

 Thousands of commercially available products contain NMs Their volume of production and diversity of applications have grown over the past decade and continue to grow rapidly Although there are many benefits to using NMs in various applications, there is concern that their environmental implications are not fully understood

Keller et al. (2013) J. Nanopart. Res., Bandyopadhyay et al. (2012) Appl. Spectrosc.

ZnO applications

of ZnO NMs produced yearly

Piccinno et al. (2012) J.Nanopart. Res.

Oceans and soils are among the main sinks of NMs in the environment

Rizwan et al. (2016) J. Hazard. Mater.

(..

Introduction

Methods

Plant studies in ZnO NMs

Altered nutritional values [Peralta-Videa, et al. 2014] Reduced biomass production and root elongatic No s in N₂ fixation in nodules [Priester, et al. 2012]

> Decreased biomass Inhibit coil enzymes [Du, 2010]

> > Reduced production of developed Developed ret photosynthesis [Zhao Increased fruit yield Enlarged root and stems[Raliya, et al. 2015]

In-lab synthesized NMs

- Most consumed legume
- o 26 million tons/year produced
- Large variety of environments
- High nutritional quality @ low cost

Methods ZnO NMs

Experimental conditions

Plant exposure

Analysis

Experimental conditions

Plant: Red Hawk kidney bean

Treatments: Z-COTE, Z-COTE HP1

bulk ZnO, ZnCl₂

Concentrations: 0, 62.5, 125, 250, 500 mg/kg

Soils: Natural soil, enriched soil (50% potting mix)

Harvest: 45 and 90 days

Plant exposure

1

Z-COTE

2

ZnO NMs

Soil characteristics

Enriched soil (50% NS, 50% PM)

Organic Matter: pH: Total Diss. Solids: Phosphorus: Zinc:

6.8 1876 mg/L 985 ± 56 mg/100g 5.4 ± 0.2 mg/100g

18%

Mature plants

Soil I

Zn in root

Epstein (1994) Proc. Natl. Acad. Sci.

Enriched soil

 $\square 62.5 \square 125 \square 250 \square 500 \square 62.5 \square 125 \square 250 \square 500$

Biomass

		Fresh weight (g)		Dry weight (g)	
		Natural	Enriched	Natural	Enriched
	Control	8.97±0.41	17.16 ± 0.66	1.4 ± 0.08	2.72 ± 0.09
	Treatments	none	none	none	none
X	Control	10.71 ± 0.83	33.88 ± 1.36	1.35 ± 0.09	3.92 ± 0.12
	Treatments	none	 ★ ZnO Bulk ·250 42.85 ± 2.37 ↓ Z-COTE · 500 21.36 ± 1.56 	none	none

Hajrasuliha (1980) Plant Soil; Tavakkoli et al. (2010) J. Exp. Bot.

Mature pods

28

The soil type highly affects the way the nanomaterials interact with the plant system

Summary

R

Acknowledgements

Dudley family for the Endowed Research Professorship

Dr. James Kelly, Michigan State University

Thank you for your attention

LON STREET